Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Adv Radiat Oncol ; 9(5): 101456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550376

RESUMO

Purpose: The purpose of this study was to evaluate the feasibility and safety of dose-escalated proton beam therapy for treating chordomas and chondrosarcomas of the skull base and spine. Methods: A prospective cohort of 54 patients (42 with chordomas and 12 with chondrosarcomas) was enrolled between 2010 and 2018. The primary endpoints were feasibility and <20% rate of acute grade ≥3 toxicity, and secondary endpoints included cancer-specific outcomes and toxicities. Patients were followed with magnetic resonance imaging or computed tomography at 3-month intervals. Proton beam therapy was delivered with doses up to 79.2 Gy using protons only, combination protons/intensity modulated radiation therapy (IMRT), or IMRT only. Results: Feasibility endpoints were met, with only 2 out of 54 patient radiation therapy plans failing to meet dosimetric constraints with protons, and 4 out of 54 experiencing a delay or treatment break >5 days, none for toxicities related to treatment. There were no grade 4 acute toxicities and 1 grade 3 acute toxicity (sensory neuropathy). The only 2 grade 3 late toxicities recorded, osteoradionecrosis and intranasal carotid blowout (mild and not emergently treated), occurred in a single patient. We report overall survival as 83% at 5 years, with local failure-free survival and progression-free survival rates of 72% and 68%, respectively. Five patients developed distant disease, and among the 9/54 patients who died, 4 deaths were not attributed to treatment or recurrence. Conclusions: Our findings suggest that high-dose proton therapy alone or in combination with IMRT is a safe and effective treatment option for chordomas and chondrosarcomas of the skull base and spine.

2.
Sci Rep ; 14(1): 4922, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418494

RESUMO

Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Prognóstico , Imageamento por Ressonância Magnética/métodos , Genômica
3.
Nat Cancer ; 5(3): 517-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216766

RESUMO

We previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII+ glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed. Secondary outcomes included median progression-free survival (5.2 months; 90% confidence interval (CI), 2.9-6.0 months) and median overall survival (11.8 months; 90% CI, 9.2-14.2 months). In exploratory analyses, comparison of the TME in tumors harvested before versus after CAR + aPD1 administration demonstrated substantial evolution of the infiltrating myeloid and T cells, with more exhausted, regulatory, and interferon (IFN)-stimulated T cells at relapse. Our study suggests that the combination of CAR T cells and PD-1 inhibition in GBM is safe and biologically active but, given the lack of efficacy, also indicates a need to consider alternative strategies.


Assuntos
Anticorpos Monoclonais Humanizados , Glioblastoma , Humanos , Glioblastoma/terapia , Receptores ErbB , Recidiva Local de Neoplasia/metabolismo , Linfócitos T , Microambiente Tumoral
4.
Pediatr Blood Cancer ; 70(12): e30708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794575

RESUMO

BACKGROUND: The intent of this study is to characterize indications for pediatric palliative-intent proton radiation therapy (PIPRT). PROCEDURE: We retrospectively reviewed patients 21 years and younger who received PIPRT. We defined PIPRT as radiotherapy (RT) aimed to improve cancer-related symptoms/provide durable local control in the non-curative setting. Mixed proton/photon plans were included. Adjacent re-irradiation (reRT) was defined as a reRT volume within the incidental dose cloud of a prior RT target, whereas direct reRT was defined as in-field overlap with prior RT target. Acute toxicity during RT until first inspection visit was graded according to the Common Terminology Criteria for Adverse Events. The Kaplan-Meier method, measured from last PIPRT fraction, was used to assess progression-free survival (PFS) and overall survival (OS). RESULTS: Eighteen patients underwent PIPRT between 2014 and 2020. Median age at treatment start was 10 years [2-21]. Median follow-up was 8.2 months [0-48]. Treatment sites included: brain/spine [10], abdomen/pelvis [3], thorax [3], and head/neck [2]. Indications for palliation included: durable tumor control [18], neurologic symptoms [4], pain [3], airway compromise [2], and great vessel compression [1]. Indications for protons included: reRT [15] (three adjacent, 12 direct), craniospinal irradiation [4], reduction of dose to normal tissues [3]. Sixteen experienced grade (G) 1-2 toxicity; two G3. There were no reports of radionecrosis. Median PFS was 5.3 months [95% confidence interval (CI): 2.7-16.3]. Median OS was 8.3 months [95% CI: 5.5-26.3]. CONCLUSIONS: The most common indication for PIPRT was reRT to provide durable tumor control. PIPRT appears to be safe, with no cases of high-grade toxicity.


Assuntos
Neoplasias , Terapia com Prótons , Reirradiação , Humanos , Criança , Reirradiação/efeitos adversos , Reirradiação/métodos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Estudos Retrospectivos , Prótons , Dosagem Radioterapêutica , Neoplasias/radioterapia , Neoplasias/etiologia , Recidiva Local de Neoplasia/patologia
5.
J Oncol Pharm Pract ; 29(2): 469-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35607285

RESUMO

INTRODUCTION: Memantine is used for neurocognitive protection in patients undergoing cranial radiotherapy for central nervous system tumors and is reported to be well-tolerated. CASE REPORT: Presented is a case of memantine-induced altered mental status requiring an intensive care unit admission. An 18-year-old male with relapsed, progressive medulloblastoma presented with severe altered mental status shortly after the first fraction of palliative whole brain radiotherapy. At the time, the patient was on day five of memantine therapy, which had been prescribed to reduce neurocognitive toxicity risk. MANAGEMENT & OUTCOME: Memantine was withheld while dexamethasone, valproate, and morphine were continued for headache. Approximately 50 h after admission, the patient's confusion significantly improved. Evaluation of acute altered mental status was unrevealing, including but not limited to negative urinary toxicology screen and lack of disease progression on imaging. Whole brain radiotherapy was resumed after a two-day cessation and he was discharged home after four days with complete resolution of symptoms. DISCUSSION: Clinicians should be aware of and consider the risk of altered mental status with memantine, given the increased utilization and upcoming clinical trials in pediatric patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Masculino , Humanos , Adolescente , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Memantina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos
6.
Sci Data ; 9(1): 453, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906241

RESUMO

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Prognóstico
7.
Sci Rep ; 12(1): 8784, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610333

RESUMO

Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
8.
Adv Radiat Oncol ; 7(4): 100929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280349

RESUMO

Purpose: Managing pediatric patients requiring daily general anesthesia (GA) for radiation therapy (RT) in the setting of COVID-19 is complex, owing to the aerosolizing nature of GA procedures, the risk of cardiopulmonary complications for infected patients, and the treatment of immunocompromised oncology patients in a busy, densely populated radiation oncology clinic. Methods and Materials: We developed an institutional protocol to define procedures for COVID-19 testing and protection of patients, caregivers, and staff, hypothesizing that this protocol would allow patients requiring GA to be safely treated, minimizing COVID-19 transmission risk to both patients and staff, and at the same time maintaining pre-COVID-19 patient volumes. All patients underwent COVID-19 testing before their first treatment and thrice weekly during treatment. For patients who tested positive for COVID-19, RT was delivered in the last end-of-day treatment appointment. A negative pressure room was used for GA induction and recovery, and separate physician/nurse teams were designated for in-room versus out-of-room patient management. Results: Seventy-eight pediatric patients received RT under GA, versus 69 over the same prior year timeframe, and 2 patients received 2 courses of RT under GA, for a total of 80 courses. The mean age was 4.9 years (range, 0.5-19.0 years) and 41 of 78 (52.6%) were male. Two patients (2.6%) received 2 courses of RT under GA, establishing a total of 80 courses. The mean number of treatment fractions was 22.2 (range, 1-40). Two of 78 patients (2.6%) tested positive for COVID-19; both were asymptomatic. Both patients completed treatment as prescribed. Neither patient developed cardiopulmonary symptoms complicating anesthesia, and neither patient experienced grade 3+ acute radiation toxicity. Conclusions: With careful multidisciplinary planning to mitigate COVID-19 risk, pediatric RT with GA was carried out for a large patient volume without widespread infection and without increased toxic effects from either GA or RT.

9.
Int J Radiat Oncol Biol Phys ; 112(1): 237-246, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425196

RESUMO

PURPOSE: This study aimed to investigate the correlation between imaging changes in brain normal tissue and the spatial distribution of linear energy transfer (LET) for a cohort of patients with meningioma treated with scanned proton beams. Then, assuming imaging changes are induced by cell lethality, we studied the correlation between normal tissue complication probability and LET. METHODS AND MATERIALS: Magnetic resonance imaging T2/fluid attenuated inversion recovery acquired at different intervals after proton radiation were coregistered with the planning computed tomography (CT) images from 26 patients with meningioma with abnormalities after proton radiation therapy. For this purpose, the T2/fluid attenuated inversion recovery areas not on the original magnetic resonance images were contoured, and the LET values for each voxel in the patient geometry were calculated to investigate the correlation between the position of imaging changes and the LET at those positions. To separate the effect of the dose as the inductor of these changes, we compared the LET in these areas with a sample of voxels matching the dose distributions across the image change areas. Patients with a higher LET in image change areas were grouped to verify whether they shared common characteristics. RESULTS: Eleven of the patients showed higher dose-averaged LET (LETd) in imaging change regions than in the group of voxels with the same dose. This group of patients had significantly shallower targets for their treatment than the other 15 and used fewer beams and angles. CONCLUSIONS: This study points toward the possibility that areas with imaging change are more likely to occur in regions with high dose or in areas with lower dose but increased LETd. The effect of LETd on imaging changes seems to be more relevant when treating superficial lesions with few nonopposed beams. However, most patients did not show a spatial correlation between their image changes and the LETd values, limiting the cases for the possible role of high LET as a toxicity inductor.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Encéfalo , Humanos , Transferência Linear de Energia , Imageamento por Ressonância Magnética , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Método de Monte Carlo , Probabilidade , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
10.
Int J Part Ther ; 8(1): 62-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285936

RESUMO

PURPOSE: To describe an implementation of dual-energy computed tomography (DECT) for calculation of proton stopping-power ratios (SPRs) in a commercial treatment-planning system. The process for validation and the workflow for safe deployment of DECT is described, using single-energy computed tomography (SECT) as a safety check for DECT dose calculation. MATERIALS AND METHODS: The DECT images were acquired at 80 kVp and 140 kVp and were processed with computed tomography scanner software to derive the electron density and effective atomic number images. Reference SPRs of tissue-equivalent plugs from Gammex (Middleton, Wisconsin) and CIRS (Computerized Imaging Reference Systems, Norfolk, Virginia) electron density phantoms were used for validation and comparison of SECT versus DECT calculated through the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, California) application programming interface scripting tool. An in-house software was also used to create DECT SPR computed tomography images for comparison with the script output. In the workflow, using the Eclipse system application programming interface script, clinical plans were optimized with the SECT image set and then forward-calculated with the DECT SPR for the final dose distribution. In a second workflow, the plans were optimized using DECT SPR with reduced range-uncertainty margins. RESULTS: For the Gammex phantom, the root mean square error in SPR was 1.08% for DECT versus 2.29% for SECT for 10 tissue-surrogates, excluding the lung. For the CIRS Phantom, the corresponding results were 0.74% and 2.27%. When evaluating the head and neck plan, DECT optimization with 2% range-uncertainty margins achieved a small reduction in organ-at-risk doses compared with that of SECT plans with 3.5% range-uncertainty margins. For the liver case, DECT was used to identify and correct the lipiodol SPR in the SECT plan. CONCLUSION: It is feasible to use DECT for proton-dose calculation in a commercial treatment planning system in a safe manner. The range margins can be reduced to 2% in some sites, including the head and neck.

11.
Br J Radiol ; 93(1116): 20190619, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960655

RESUMO

OBJECTIVES: Prompt gamma (PG) imaging has previously been demonstrated for use in proton range verification of a brain treatment with a homogeneous target region. In this study, the feasibility of PG imaging to detect anatomic change within a heterogeneous region is presented. METHODS: A prompt gamma camera recorded several fractions of a patient treatment to the base of skull. An evaluation CT revealed a decrease in sinus cavity filling during the treatment course. Comparison of PG profiles between measurement and simulation was performed to investigate range variations between planned and measured pencil beam spot positions. RESULTS: For one field, an average over range of 3 mm due to the anatomic change could be detected for a subset of spots traversing the sinus cavity region. The two other fields appeared less impacted by the change but predicted range variations could not be detected. These results were partially consistent with the simulations of the evaluation CT. CONCLUSION: We report the first clinical application of PG imaging that detected some of the expected small regional proton range deviations due to anatomic change in a heterogeneous region. However, several limitations exist with the technology that may limit its sensitivity to detect range deviations in heterogeneous regions. ADVANCES IN KNOWLEDGE: We report on the first detection of range variations due to anatomic change in a heterogeneous region using PGI. The results confirm the feasibility of using PG-based range verification in highly heterogeneous target regions to identify deviations from the treatment plan.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Raios gama , Prótons , Tomografia Computadorizada por Raios X , Estudos de Viabilidade , Humanos
12.
JCO Clin Cancer Inform ; 4: 234-244, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32191542

RESUMO

PURPOSE: To construct a multi-institutional radiomic model that supports upfront prediction of progression-free survival (PFS) and recurrence pattern (RP) in patients diagnosed with glioblastoma multiforme (GBM) at the time of initial diagnosis. PATIENTS AND METHODS: We retrospectively identified data for patients with newly diagnosed GBM from two institutions (institution 1, n = 65; institution 2, n = 15) who underwent gross total resection followed by standard adjuvant chemoradiation therapy, with pathologically confirmed recurrence, sufficient follow-up magnetic resonance imaging (MRI) scans to reliably determine PFS, and available presurgical multiparametric MRI (MP-MRI). The advanced software suite Cancer Imaging Phenomics Toolkit (CaPTk) was leveraged to analyze standard clinical brain MP-MRI scans. A rich set of imaging features was extracted from the MP-MRI scans acquired before the initial resection and was integrated into two distinct imaging signatures for predicting mean shorter or longer PFS and near or distant RP. The predictive signatures for PFS and RP were evaluated on the basis of different classification schemes: single-institutional analysis, multi-institutional analysis with random partitioning of the data into discovery and replication cohorts, and multi-institutional assessment with data from institution 1 as the discovery cohort and data from institution 2 as the replication cohort. RESULTS: These predictors achieved cross-validated classification performance (ie, area under the receiver operating characteristic curve) of 0.88 (single-institution analysis) and 0.82 to 0.83 (multi-institution analysis) for prediction of PFS and 0.88 (single-institution analysis) and 0.56 to 0.71 (multi-institution analysis) for prediction of RP. CONCLUSION: Imaging signatures of presurgical MP-MRI scans reveal relatively high predictability of time and location of GBM recurrence, subject to the patients receiving standard first-line chemoradiation therapy. Through its graphical user interface, CaPTk offers easy accessibility to advanced computational algorithms for deriving imaging signatures predictive of clinical outcome and could similarly be used for a variety of radiomic and radiogenomic analyses.


Assuntos
Neoplasias Encefálicas/mortalidade , Glioblastoma/mortalidade , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Recidiva Local de Neoplasia/mortalidade , Fenômica/métodos , Software , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Intervalo Livre de Progressão , Curva ROC , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
13.
Pediatr Blood Cancer ; 66(12): e27972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512390

RESUMO

BACKGROUND: Radiotherapy is often deferred in very young children with medulloblastoma, in favor of more intense chemotherapy and stem cell rescue; however, posterior fossa radiation has been shown to improve overall survival (OS) and event-free survival compared with adjuvant chemotherapy alone. This study was performed to assess the OS, recurrence-free survival (RFS), patterns of failure, and clinical toxicity for children aged five and under who received focal proton radiation to the tumor bed alone. PROCEDURE: From 2010 to 2017, 14 patients with newly diagnosed medulloblastoma at one institution received tumor bed irradiation following surgery and chemotherapy. The median age of the patients was 40 months (range, 10.9-62.9 months). RESULTS: With a median follow-up of 54 months, four patients relapsed: three within the central nervous system (CNS) outside of the posterior fossa, and one within the tumor bed after subtotal resection. All relapses occurred within 28 months after the completion of radiation therapy. Five-year OS and RFS for this cohort of patients were 84% (95% CI, 48%-96%) and 70% (95% CI, 38%-88%), respectively. One patient experienced significant tumor regrowth soon after completion of radiation, autopsy showed viable tumor and necrosis near and within the brainstem, with relation to radiation unknown; however, no other acute clinical toxicities greater than grade 2 were observed in this group of patients. In the nine patients with available performance status follow-up, no significant changes in Lansky performance status were observed. CONCLUSIONS: Five-year OS and RFS following tumor bed irradiation in young children with medulloblastoma appear to be improved compared with other studies that forego the use of radiation therapy in this patient population. This approach should be further investigated in young children with medulloblastoma.


Assuntos
Neoplasias Cerebelares/radioterapia , Irradiação Craniana/mortalidade , Meduloblastoma/radioterapia , Terapia com Prótons/mortalidade , Neoplasias Cerebelares/patologia , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Meduloblastoma/patologia , Prognóstico , Planejamento da Radioterapia Assistida por Computador , Taxa de Sobrevida
14.
J Surg Oncol ; 120(2): 200-205, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111502

RESUMO

BACKGROUND/OBJECTIVES: Proton therapy (PRT) has emerged as a treatment option for chordomas/chondrosarcomas to escalate radiation dose more safely. We report results of a phase I/II trial of PRT in patients with chordoma/chondrosarcoma. METHODS: Twenty adult patients with pathologically confirmed, nonmetastatic chordoma or chondrosarcoma were enrolled in a single-institution prospective trial of PRT from 2010 to 2014. Seventeen patients received adjuvant PRT and three received definitive PRT. Median dose was 73.8 Gy(RBE; range 68.4-79.2 Gy) using PRT-only (n = 6) or combination PRT/intensity-modulated radiotherapy (IMRT) (n = 14). Quality-of-life (QOL) and fatigue were assessed weekly and every 3 months posttreatment with the Functional Assessment of Cancer Therapy - Brain (FACTBr) and Brief Fatigue Inventory. Primary endpoint was feasibility (90% completing treatment with < 10 day treatment delay and ≤ 20% unexpected acute grade ≥ 3 toxicity). RESULTS: Tumors included chordomas of the skull base (n = 10), sacrum (n = 5), and cervical spine (n = 3), and skull base chondrosarcomas (n = 2). Median age was 57. The 80% had positive margins/gross disease. Median follow-up was 37 months. Feasibility endpoints were met. The 3-year local control and progression-free survival was 86% and 81%. There were no deaths. Two patients had acute grade 3 toxicity (both fatigue). One had late grade 3 toxicity (epistaxis and osteoradionecrosis). There were no significant differences in patient reported fatigue or QOL from baseline to the end-of-treatment. CONCLUSIONS: We report favorable local control, survival, and toxicity following PRT.


Assuntos
Vértebras Cervicais , Condrossarcoma/radioterapia , Cordoma/radioterapia , Terapia com Prótons , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Coluna Vertebral/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Dosagem Radioterapêutica
16.
Int J Radiat Oncol Biol Phys ; 104(2): 401-408, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738983

RESUMO

PURPOSE: Patients with high-risk neuroblastoma (HR-NBL) require radiation to the primary tumor site and sites of persistent metastatic disease. Proton radiation therapy (PRT) may promote organ sparing, but long-term outcomes have not been studied. METHODS AND MATERIALS: Sequential patients with HR-NBL received PRT: 2160 cGy (relative biological effectiveness) to primary tumor bed and persistent metastatic sites, with 3600 cGy (relative biological effectiveness) to gross residual disease. RESULTS: From September 2010 through September 2015, 45 patients with HR-NBL received PRT after systemic therapy, primary tumor resection, and high-dose chemotherapy with stem cell rescue. Median age was 46 months at the time of PRT (range, 10 months to 12 years); 23 patients (51%) were male. Primary tumors were adrenal in 40 (89%); 11 (24%) received boost. Ten metastatic sites in 8 patients were radiated. Double scattered proton beams were used for 19 (42%) patients, in combination with x-rays for 2 (5%). The remaining 26 (58%) received pencil beam scanning, available since January 2013. We observed 97% freedom from primary site recurrence at 3, 4, and 5 years. Overall survival rates were 89%, 80%, and 80% and disease-free survival rates were 77%, 70%, and 70%, at 3, 4, and 5 years, respectively. With median follow-up of 48.7 months from diagnosis (range, 11-90 months) for all patients (57.4 months for those alive), 37 (82%) patients are alive, and 32 (71%) are without evidence of disease. One patient experienced locoregional recurrence; the remaining 12 (27%) experienced relapse at distant, nonradiated sites. Acute toxicities during treatment were mainly grade 1. No patient has experienced World Health Organization grade 3 or 4 long-term renal or hepatic toxicity. Pencil beam scanning plans required less planning time and resources than double scattered plans. CONCLUSIONS: We observe excellent outcomes in patients treated with PRT for HR-NBL from 2010 through 2015, with 82% of patients alive and 97% free of primary site recurrence. No patient has experienced long-term renal or liver toxicity. This treatment maximizes normal tissue preservation and is appropriate for this patient population.


Assuntos
Neuroblastoma/radioterapia , Terapia com Prótons/métodos , Neoplasias das Glândulas Suprarrenais/radioterapia , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Lactente , Masculino , Neoplasia Residual , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Neuroblastoma/secundário , Terapia com Prótons/efeitos adversos , Eficiência Biológica Relativa , Risco , Taxa de Sobrevida , Neoplasias Torácicas/radioterapia , Neoplasias Torácicas/secundário , Fatores de Tempo , Resultado do Tratamento
17.
Neurosurgery ; 84(5): 1000-1010, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476191

RESUMO

Radiation therapy plays a significant role in management of benign and malignant diseases of the central nervous system. Patients may be at risk of acute and late toxicity from radiation therapy due to dose deposition in critical normal structures. In contrast to conventional photon delivery techniques, proton therapy is characterized by Bragg peak dose deposition which results in decreased exit dose beyond the target and greater sparing of normal structure which may reduce the rate of late toxicities from treatment. Dosimetric studies have demonstrated reduced dose to normal structures using proton therapy as compared to photon therapy. In addition, clinical studies are being reported demonstrating safety, feasibility, and low rates of acute toxicity. Technical challenges in proton therapy remain, including full understanding of depth of proton penetration and the biological activity in the distal Bragg peak. In addition, longer clinical follow-up is required to demonstrate reduction in late toxicities as compared to conventional photon-based radiation techniques. In this review, we summarize the current clinical literature and areas of active investigation in proton therapy for adult central nervous system malignancies.


Assuntos
Neoplasias do Sistema Nervoso Central/radioterapia , Terapia com Prótons/métodos , Adulto , Humanos
18.
J Neurooncol ; 141(2): 421-429, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30446903

RESUMO

PURPOSE: The prognostic impact of the histopathologic features of recurrent glioblastoma surgical specimens is unknown. We sought to determine whether key histopathologic characteristics in glioblastoma tumors resected after chemoradiotherapy are associated with overall survival (OS). METHODS: The following characteristics were quantified in recurrent glioblastoma specimens at our institution: extent of viable tumor (accounting for % of specimen comprised of tumor and tumor cellularity), mitoses per 10 high-power fields (0, 1-10, > 10), Ki-67 proliferative index (0-100%), hyalinization (0-6; none to extensive), rarefaction (0-6), hemosiderin (0-6), and % of specimen comprised of geographic necrosis (0-100%; converted to 0-6 scale). Variables associated with OS in univariate analysis, as well as age, eastern cooperative oncology group performance status (ECOG PS), extent of repeat resection, time from initial diagnosis to repeat surgery, and O6-methylguanine-DNA methyltransferase promoter methylation, were included in a multivariable Cox proportional hazards model. RESULTS: 37 specimens were assessed. In a multivariate model, high Ki-67 proliferative index was the only histopathologic characteristic associated with worse OS following repeat surgery for glioblastoma (hazard ratio (HR) 1.3, 95% CI 1.1-1.5, p = 0.003). Shorter time interval from initial diagnosis to repeat surgery (HR 1.11, 95% CI 1.02-1.21, p = 0.016) and ECOG PS ≥ 2 (HR 4.19, 95% CI 1.72-10.21, p = 0.002) were also independently associated with inferior OS. CONCLUSION: In patients with glioblastoma undergoing repeat resection following chemoradiotherapy, high Ki-67 index in the recurrent specimen, short time to recurrence, and poor PS are independently associated with worse OS. Histopathologic quantification of viable tumor versus therapy-related changes has limited prognostic influence.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioblastoma/patologia , Glioblastoma/cirurgia , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Metilação de DNA , Progressão da Doença , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/radioterapia , Estudos Retrospectivos , Resultado do Tratamento
19.
Cancer Res ; 78(23): 6632-6642, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322863

RESUMO

: Circulating tumor cells (CTC) are known to be present in the blood of patients with glioblastoma (GBM). Here we report that GBM-derived CTC possess a cancer stem cell (CSC)-like phenotype and contribute to local tumorigenesis and recurrence by the process of self-seeding. Genetic probes showed that mouse GBM-derived CTC exhibited Sox2/ETn transcriptional activation and expressed glioma CSC markers, consistent with robust expression of stemness-associated genes including SOX2, OCT4, and NANOG in human GBM patient-derived samples containing CTC. A transgenic mouse model demonstrated that CTC returned to the primary tumor and generated new tumors with enhanced tumorigenic capacity. These CTCs were resistant to radiotherapy and chemotherapy and to circulation stress-induced cell apoptosis. Single-cell RNA-seq analysis revealed that Wnt activation induced stemness and chemoresistance in CTC. Collectively, these findings identify GBM-derived CTC as CSC-like cells and suggest that targeting Wnt may offer therapeutic opportunities for eliminating these treatment-refractory cells in GBM. SIGNIFICANCE: These findings identify CTCs as an alternative source for in situ tumor invasion and recurrence through local micrometastasis, warranting eradication of systemic "out-of-tumor" CTCs as a promising new therapeutic opportunity for GBM.


Assuntos
Glioma/metabolismo , Glioma/patologia , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imunofenotipagem , Masculino , Camundongos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Estresse Fisiológico , Proteínas Wnt/metabolismo
20.
Sci Rep ; 8(1): 5087, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572492

RESUMO

The remarkable heterogeneity of glioblastoma, across patients and over time, is one of the main challenges in precision diagnostics and treatment planning. Non-invasive in vivo characterization of this heterogeneity using imaging could assist in understanding disease subtypes, as well as in risk-stratification and treatment planning of glioblastoma. The current study leveraged advanced imaging analytics and radiomic approaches applied to multi-parametric MRI of de novo glioblastoma patients (n = 208 discovery, n = 53 replication), and discovered three distinct and reproducible imaging subtypes of glioblastoma, with differential clinical outcome and underlying molecular characteristics, including isocitrate dehydrogenase-1 (IDH1), O6-methylguanine-DNA methyltransferase, epidermal growth factor receptor variant III (EGFRvIII), and transcriptomic subtype composition. The subtypes provided risk-stratification substantially beyond that provided by WHO classifications. Within IDH1-wildtype tumors, our subtypes revealed different survival (p < 0.001), thereby highlighting the synergistic consideration of molecular and imaging measures for prognostication. Moreover, the imaging characteristics suggest that subtype-specific treatment of peritumoral infiltrated brain tissue might be more effective than current uniform standard-of-care. Finally, our analysis found subtype-specific radiogenomic signatures of EGFRvIII-mutated tumors. The identified subtypes and their clinical and molecular correlates provide an in vivo portrait of phenotypic heterogeneity in glioblastoma, which points to the need for precision diagnostics and personalized treatment.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Isocitrato Desidrogenase/análise , Imageamento por Ressonância Magnética/métodos , Receptores ErbB/análise , Feminino , Humanos , Masculino , O(6)-Metilguanina-DNA Metiltransferase/análise , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...